

Sistemi di conversione ed accumulo dell'energia per la mobilità elettrica ed ibrida

Clemente Capasso

Istituto Motori – National Research Council of Italy, Via Marconi 4, Naples 80125, Italy

Istituto Motori – National Research Council of Italy

The Istituto Motori is one of the largest research Institutes of the CNR. The 22 laboratories are organised in test cells for propulsion and energy conversion systems, distributed on an area greater than 4000 m².

Staff:

- 45 Researchers and Technologists
- 25 Technicians and Administrative Employees

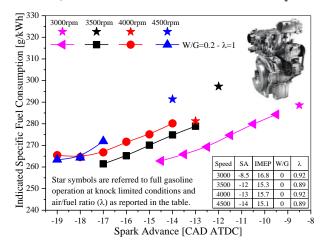
Director: Dr. Gerardo Valentino

Main Research Fields:

- > Integrated methodologies for propulsion and energy systems
- > Methodologies and technologies for sustainable transport
- > Advanced systems for thermal engines optimization
- Advanced technologies and systems for efficient energy conversion with low environmental impact
- > Storage and conversion systems for the electric/hybrid mobility

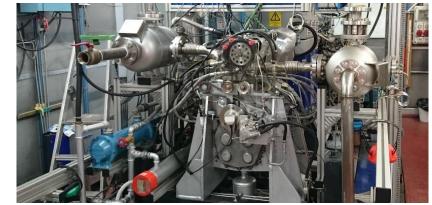
SVILUPPO TECNOLOGICO PER MOTORI ECOSOSTENIBILI

Il gas naturale è il principale vettore energetico per veicoli ecosostenibili



L'iniezione diretta di gas naturale e miscele con H₂ in camera di combustione di un motore light duty è effettuata per il miglioramento di prestazioni ed emissioni gassose e particellari.

L'ottimizzazione della **combustione** mediante ricerca di base ed applicata è requisito fondamentale per la riduzione delle emissioni ed il miglioramento dell'efficienza



Miglioramento dell'efficienza termica nei motori a benzina turbocompressi ad elevate prestazioni: **Iniezione di acqua**

L'iniezione d'acqua impiegata su un motore bicilindrico automotive ha conseguito una riduzione di consumo specifico fino al 12%, a carichi medio/alti e in un ampio intervallo di regime motore. L'aumento della densità di potenza nei **motori ad alte prestazioni** permette la riduzione delle emissioni di CO₂ attraverso l'aumento dell'efficienza e la riduzione di peso del motore.

Motore da ricerca in sperimentazione per lo sviluppo di motori diesel con densità di potenza maggiori di 100 kW/l

PROPULSORI ALTERNATIVI ED IMPATTO AMBIENTALE DEI VEICOLI

Propulsione ibrida per applicazioni marine

Caratteristiche Principali Peschereccio TESEO

Obiettivo: Applicazione ad un peschereccio reale di Tecnologie ad alta Efficienza per la Sostenibilità Energetica e ambientale On-board

LFT	17.44 m e ambient	
Larghezza/ Altezza	7.62 m / 2.70 m	
Motorizzazione Termica/ Elettrica	2 x 198 kW Diesel/ 2 x 50 kW	
Pacchi batteria	2 x 19 kWh 66 Ah	
Sistema fotovoltaico calpestabile	1.80 kWp	

Sistema di generazione a bordo da 10 kW a ridotto costo ed impatto ambientale per veicoli elettrici

Obiettivo: Realizzazione di un **Range Extender** basato su motore termico ad alta efficienza e ridotte emissioni per la ricarica in continuo di veicoli elettrici (minori dimensioni e costi batterie)

Valutazione delle performance emissive e dei consumi dei veicoli in uso reale

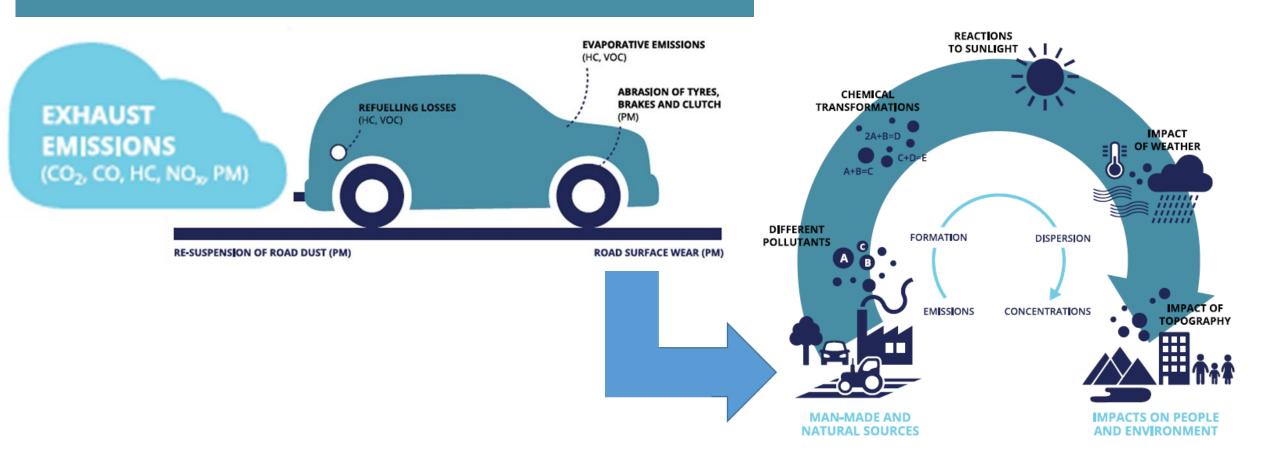
Sistema di misura delle emissioni gassose e particellari imbarcabile (PEMS)

Obiettivo: Identificazione dei percorsi stradali e monitoraggio dello stile di guida per una guida a basse emissioni e consumi (Progetto PON DrivelN2, DRIVEr Monitoring: Technologies, Methodologies and IN-vehicle INnovative systems for a safe and eco-compatible driving)

Prove effettuate su strada in ambito urbano ed in ambienti controllati (sale prova attrezzate con banchi a rulli e piste)

Definizione dei percorsi

	CO ₂ (g/s)	CO (mg/s)	NO (mg/s)	Consumo (g/s)
Benzina	0.84	1.82	1.14	0.27
CNG	0.60	1.17	0.96	0.23


Emissioni e consumo medi ottenuti sullo stesso percorso con la stessa vettura alimentata alternativamente a benzina e a gas naturale (CNG)

Trasporto su strada: Problematica delle emissioni

Road transport contributes about 15% of the EU's total emissions of carbon dioxide.

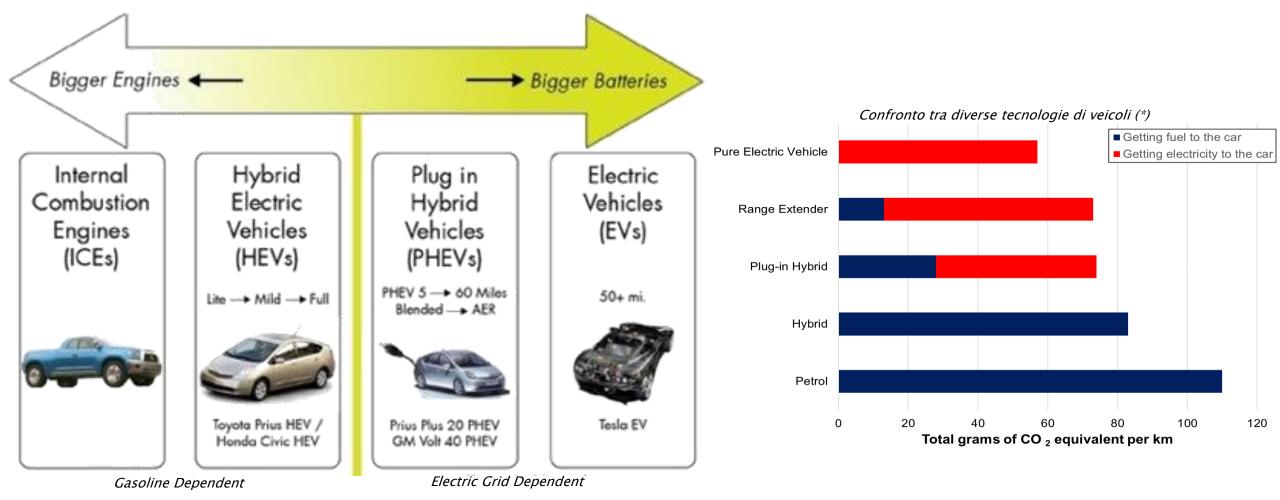
More than 30 % of NO_x emissions in the EU come from road transport.

Around 12 % of the EU's primary PM_{2.5} emissions come from road transport.

Ridurre le emissioni di anidride carbonica: obiettivi e azioni dell'UE

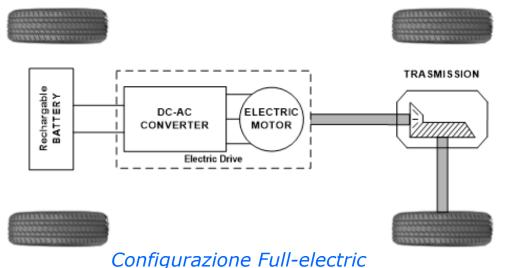
- L'Unione europea è il <u>terzo produttore di gas serra</u> dopo la Cina e gli Stati Uniti. Il **settore dell'energia** è responsabile per il 78% delle emissioni di CO₂.
- Nel 2015 l'Unione europea si impegna, con la firma dell'<u>Accordo di Parigi</u>, a ridurre le emissioni di gas serra nell'UE, rispetto ai valori del 1990, del **40%** entro il 2030 e del **90%** entro il 2050.
- Per tagliare le emissioni di centrali elettriche e delle industrie, l'Unione europea ha messo in pratica il primo mercato delle emissioni **ETS** (Emissions Trading System).

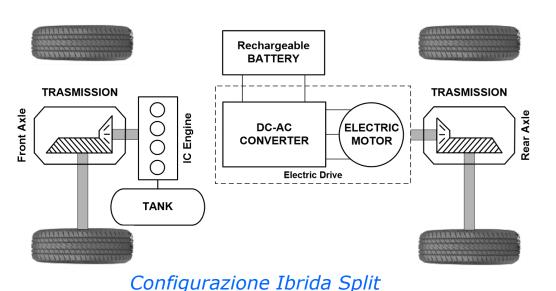
Emissioni di CO₂ e obiettivi UE: Focus su passenger cars

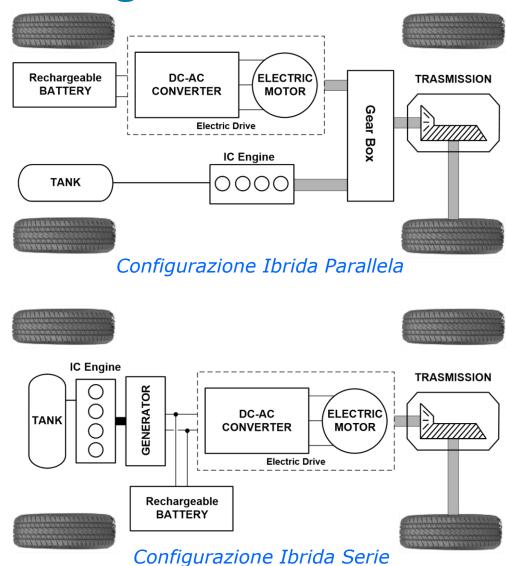

EU Climate Action - Road transport: Reducing CO₂ emissions from vehicles

- Il livello medio di emissioni dei nuovi veicoli venduti nel 2017 è di 118.5 g/km. Tale valore è di gran lunga inferiore al target di 130 g/km che era stato previsto per il 2015.
- Dal 2021, il livello medio di emissioni da raggiungere è di 95 g/km di CO₂
- Ciò si traduce in un consumo medio di carbutante pari a 4.1 l/100 km per veicoli a benzina ed a 3.6 l/100 km per veicoli diesel

Per alcune categorie di veicoli, l'impiego di sistemi di propulsione **elettrici o ibridi** potrebbe rappresentare, allo stato attuale della tecnologia, una possibile soluzione.


Veicoli elettrici ed ibridi




(*)Source: JRC Technichal Report: well-to-wheels analysis of future automotive fuels and powertrains in the european context Summary of WTW Energy and GHG balances.

Veicoli elettrici/ibridi: Principali configurazioni

The world is ready for Electric Mobility!

Auto Manufacturers:

Volkswagen, oltre 10 nuovi modelli elettrici entro il 2018 e più di 30 entro il 2025

"24 DRE

Rife | Repubblica MOTORI

Destinantion Charging, offensiva Tesla

0

INDUSTRIA E FINANZA

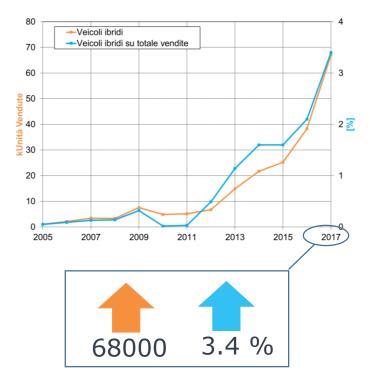
Gruppo FCA

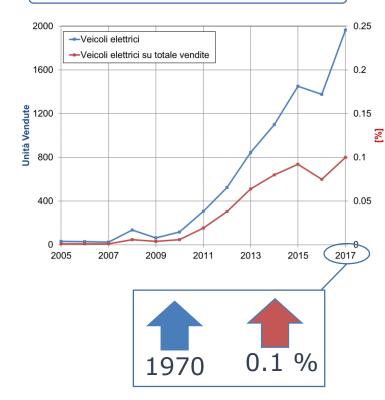
Financial Times: "Addio ai diesel dal 2022"

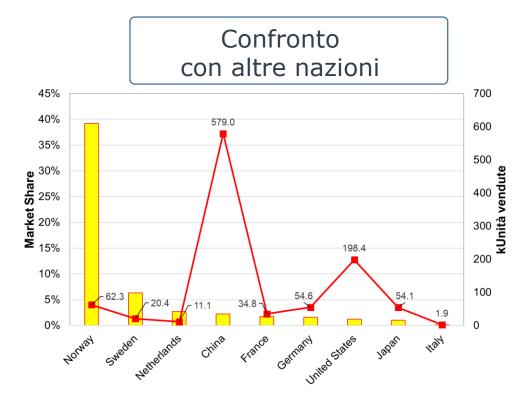
Ford accelera sulle auto ibride ed elettriche: 11 miliardi di investimenti entro il 2020

Governments:

CORRIERE DELLA SERA / ATTUALITÀ
Francia, solo auto elettriche dal 2040






Mercato Italiano Veicoli Elettrici ed Ibridi

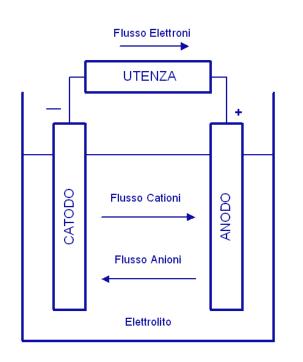
Immatricolazioni Veicoli Ibridi in Italia(*)

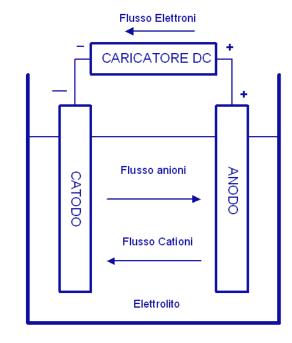
Immatricolazioni Veicoli Elettrici in Italia^(*)

(*) Dati UNRAE

EV Market Deployment Issues

Sistemi di Accumulo elettrochimico dell'energia elettrica





Sistemi di Accumulo: principali definizioni

Il termine *elemento* o cella (in inglese *cell*) indica un singolo accumulatore, costituito da un elettrodo positivo ed uno negativo, mentre per *pacco batteria* si intende un insieme di elementi collegati generalmente in serie o in parallelo.

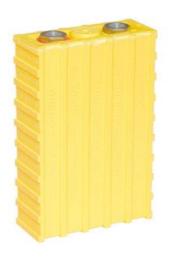
Una cella comprende tre componenti di base, che partecipano alle reazioni di carica e scarica, mostrati schematicamente in figura.

- Anodo o Elettrodo Positivo
- Catodo, o Elettrodo Negativo
- Elettrolito

Funzionamento in scarica: l'elettrodo positivo si riduce, il negativo si ossida e si verifica uno spostamento di elettroni dal negativo al positivo, attraverso il carico, e di ioni-positivi verso il catodo ed ioni-negativi verso l'anodo, attraverso l'elettrolito.

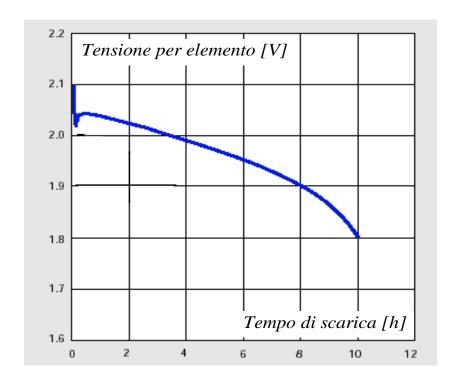
Funzionamento in carica: i moti si invertono e gli elettrodi recuperano gradualmente il loro stato di ossidazione iniziale.

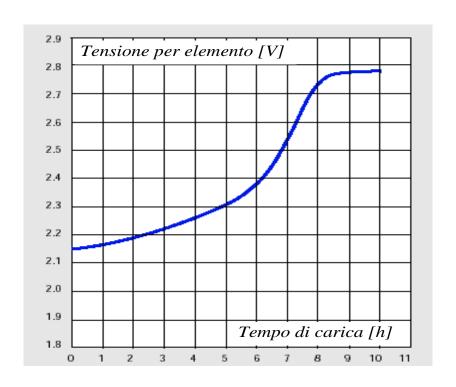
Schema del singolo elemento di accumulo durante le fasi di carica e scarica


Sistemi di Accumulo: principali definizioni

In base alle tecnologie ed ai processi costruttivi le celle di accumulo possono assumere diverse forme geometriche:

- a bottone
- cilindrico
- prismatico
- piatto

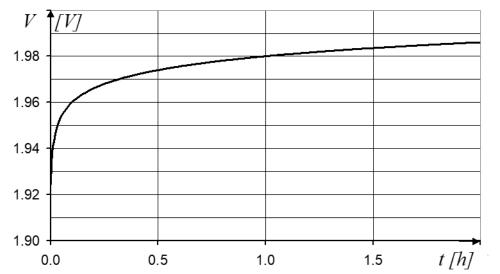


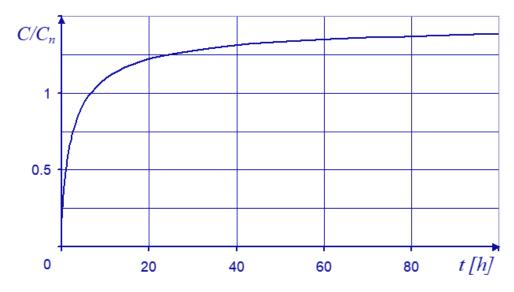


Caratteristiche di funzionamento: Tensione

In pratica una cella di accumulo è caratterizzata da curve di tensione in carica e scarica, che si possono considerare abbastanza ripetitive a parità di condizioni al contorno.

Curva di tensione in scarica per cella al Pb


Curva di tensione in carica per cella al Pb


Sistemi di Accumulo: principali parametri operativi

Tensione di circuito aperto (OCV): differenza di potenziale tra i due elettrodi, in assenza di flusso di elettroni.

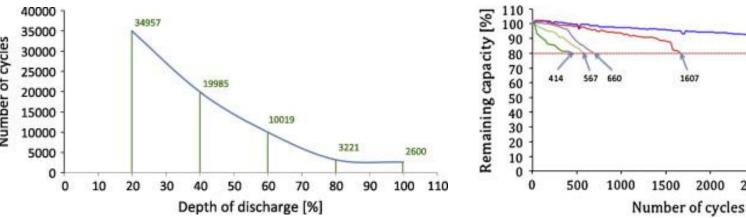
Capacità [Ah]: la quantità di carica che una cella può erogare quando sottoposta ad una scarica completa.

Recupero della tensione a circuito aperto dopo una scarica per una cella di accumulo al piombo

Caratteristica tempo capacità per una cella di accumulo al piombo

Sistemi di Accumulo: principali parametri operativi

Energia [Wh]: quantità di energia prodotta/accumulata durante una carica/scarica completa. $\Rightarrow E_s = \int_0^{T_s} vi \ dt$


Energia specifica (densità di energia): Energia accumulata riferita all'unita di peso (Wh/kg) o all'unità di volume (Wh/l)

Potenza specifica (densità di potenza): potenza massima di carica/scarica riferita all'unità di peso (W/kg) o all'unità di volume (W/l).

Stato di carica (SOC): Sommatoria algebrica o integrazione degli amperora scaricati/caricati nel tempo a partire da uno stato iniziale al tempo t_0 , che normalmente si assume corrispondente ad accumulatore perfettamente carico. $\Rightarrow SoC = \int_{t_0}^{t} i \ dt$ Lo stato di carica si può esprimere in **Ah** o in **%**, con riferimento al valore di capacità della cella di accumulo.

Charging/discharging rate: Velocità di carica/scarica espressa come rapporto tra corrente di carica/scarica e capacità nominale.

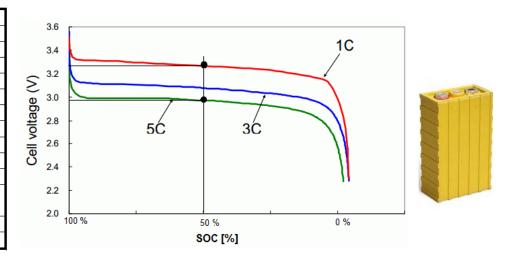
Vita utile: numero di cicli di carica/scarica supportati dalla cella di accumulo prima di una consistente riduzione delle prestazioni in termini di capacità. Il numero di cicli di carica scarica è dipendente da diversi fattori, tra cui profondità di scarica (Depth of Discharge) e charging/discharging rate.

- 1.25 lt

- 2.5 lt

-10 lt

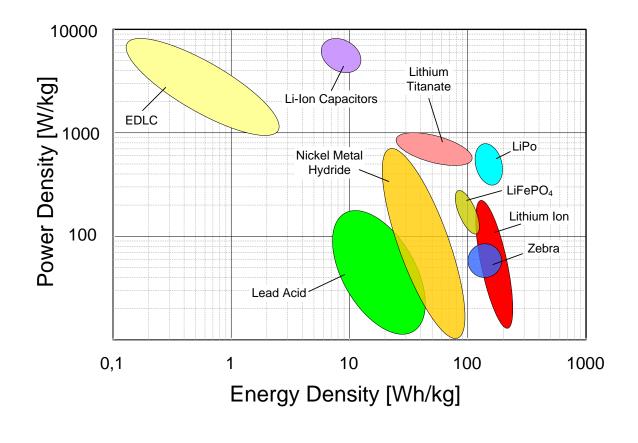
2500

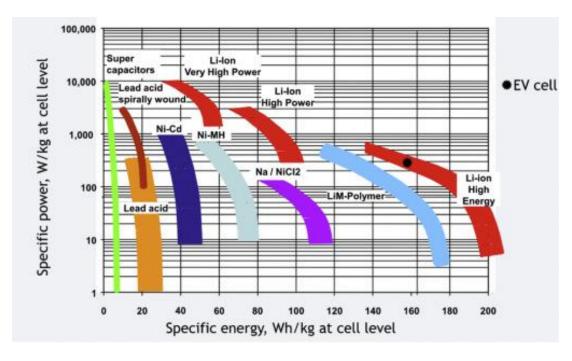

Es: Datasheet Batterie

Туре	Part number	Nominal	Power	Capacity	Lengt	h ⁽¹⁾ x W	idth ⁽¹⁾	Weight	Internal	Short-	Terminal
		voltage	15'	C 10	Х	Height	(1)		resistance	circuit	
			1.6 VpC	1.8 VpC						current	
			25°C	25°C				approx.			
		V	W	Ah		mm		kg	mΩ	Α	
P12V570	NAPW120570HP0MA	12	570	21	168	177	126	9.5	10.0	900	Male M6
P12V600	NAPW120600HP0MA	12	600	24	168	127	174	9.5	9.5	950	Male M6
P12V875	NAPW120875HP0MA	12	875	41	198	168	175	14.5	7.0	1350	Male M6
P12V1220	NAPW121220HP0MA	12	1220	51	234	169	190	19.5	6.2	1750	Male M8
P12V1575	NAPW121575HP0MA	12	1575	61	272	166	190	24.0	5.5	2200	Male M8
P12V2130	NAPW122130HP0MA	12	2130	86	359	172	226	33.0	4.0	2600	Male M8
P6V1700	NAPW061700HP0MA	6	1700	122	272	166	190	25.0	1.5	3200	Male M8
P6V2030	NAPW062030HP0MA	6	2030	178	359	171	226	32.5	1.2	4200	Male M8

(1):+/-1mm

	. ===	
Model name	LFP040AHA	Older product marking TS-LFP40AHA, TS-LYP40AHA
Nominal voltage	3.2 V	Operating voltage under load is 3.0 V
Capacity	40 AH	+/- 5%
Operating voltage	max 4.0V - min 2.8V	At 80% DOD
Deep discharge voltage	2.5 V	The cells is damaged if voltage drops bellow this level
Maximal charge voltage	4.0 V	The cells is damaged if voltage exceeds this level
Optimal discharge current	< 20 A	0.5 C
Maximal discharge current	< 120 A	3 C, continuous for max 15 minutes from full charge
Max peak discharge current	< 800 A	20 C, maximal 5 seconds in 1 minute
Optimal charge current	< 20 A	0.5 C
Maximal charge current	< 120 A	< 3 C with battery temperature monitoring
Maximal continuous operating	80 °C	The battery temperature should not increase this level
temperature		during charge and discharge
Dimensions	116x46x183 mm	Millimeters (tolerance +/- 2 mm)
Weight	1.6 kg	Kilograms (tolerance +/- 150g)




Caratteristiche richieste per la trazione elettrica

- *Energia specifica*: da questo parametro dipende la quantità di energia che è possibile immagazzinare a bordo per unità di peso/volume e quindi l'autonomia del veicolo.
- Maximum Charging Rate: un elevato valore di charging rate consente di ricaricare il pacco batteria del veicolo in tempi ridotti.
- *Durata:* la vita utile del pacco batteria deve essere la più lunga possibile, compatibilmente con i vari tipi di prestazioni richieste.
- *Sicurezza:* Per l'impiego a bordo deve essere garantita la sicurezza prevedendo opportune protezioni contro condizioni di funzionamento pericolose per l'operatore e per il pacco batteria.
- Costo: Il costo dei sistemi di accumulo ad elevata densità di energia è ancora elevato a causa della scarsa diffusione su larga scala della mobilità elettrica ed alle difficoltà di approvigionamento del litio ed altri metalli (es. Cobalto)
- *Impatto ambientale:* in molti paesi i processi di riciclo del litio non sono ancora ad uno stadio avanzato, anche se sono stati sviluppati alcuni progetti pilota sul riutilizzo delle batterie per trazione come *second life batteries*.

Caratteristiche richieste per la trazione elettrica

Principali Tecnologie di Accumulo Elettrochimico

Tecnologie Tradizionali:

Piombo

Rated cell voltage = 2,00 V operational voltage= 1,60 V - 2,40 V

- Sicurezza, Costo (0.08 € Wh),
 Potenza Specifica
- Energia Specifica (max 50 Wh/kg)
 Densità di Energia (max 70 Wh/l)
 Vita utile (circa 800 cicli)
 Charging rate (max 0.2 C)
 Effetto Memoria
 Autoscarica

LiFePO₄

Rated cell voltage= 3,20 V Operational voltage= 2,5 V - 3,65 V

- Sicurezza,
 Costo (0.3 €/Wh),
 Vita utile (~ 3000 cicli)
 Energia Specifica (max 150 Wh/kg)
- Charging rate (optimal 0.5 C)
 Densità di energia (max 250 Wh/l)

Litio ioni – polimeri (Nickel

- Mn - Co)

Rated cell voltage= 3,65 V Operational voltage= 3,00 V – 4,20 V

- Vita utile (~3000 cicli carica/scarica)
 Energia Specifica (fino a 230 Wh/kg)
 Charging Rate (max 3 C)
- Sicurezza, Costo (fino a 0.7 €/Wh)

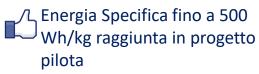
Batterie ZEBRA Sodio-Cloruro di Nichel

Rated cell voltage= 2,50 V Operational voltage= 1,20 V – 2,70 V

- Funzionamento Indipendente
 dalla temperatura ambiente,
 Energia Specifica (fino a 170 Wh/kg),
 costo (0.3€/Wh),
 Impatto Ambientale
- Gestione Temperatura batteria, Charging Rate (max 0,2 C)

Tecnologie Innovative:

Lithium Titanate Oxid (LTO)


Rated cell voltage = 2,30 V operational voltage= 1,50 V - 2,80 V

Sicurezza, Costo (0.5 € Wh), Charging Rate (Fino a 10 C), Vita utile (fino a 30.000 cicli)

Energia Specifica (max 70 Wh/kg) Densità di Energia (max 60 Wh/l)

Litio-Zolfo

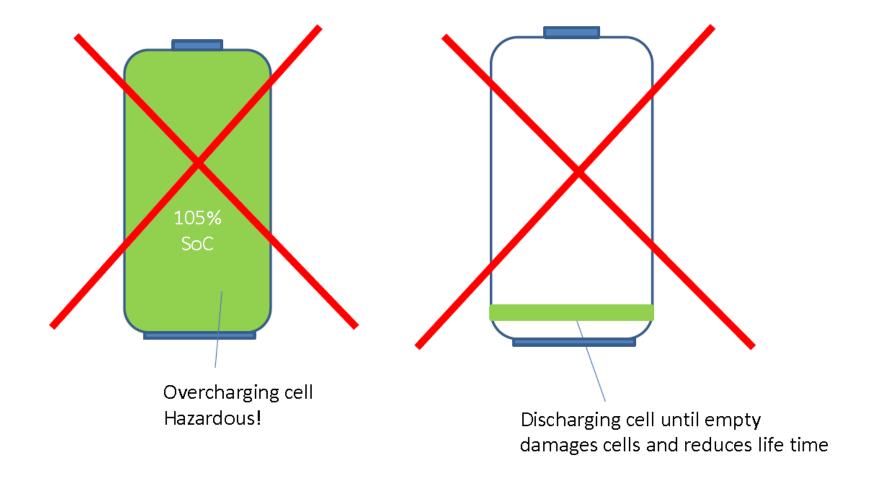
Ridotta vita utile (max 500)

batterie metallo (es. alluminio) - aria

Disponibili solo applicazioni prototipali di pochi Wh Ridotta vita utile (max 50-100)

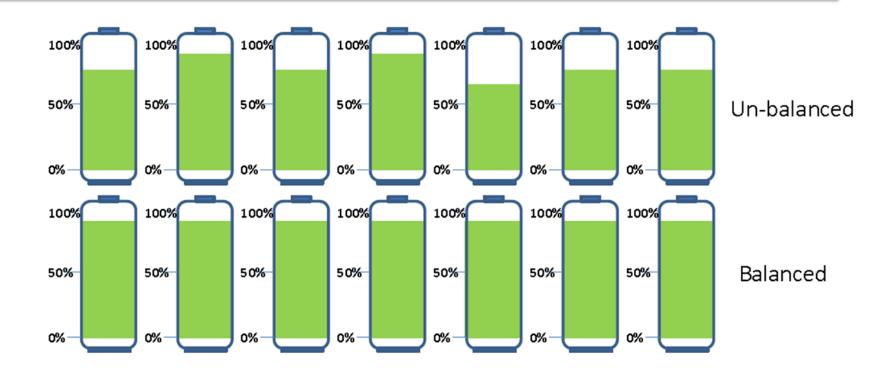
Focus su Tecnologie di Accumulo al litio

Technology	Advantages	Disadvantages
Lithium Cobalt Oxide (LiCoO ₂)	Power and energy density	Safety, cost
Nickel Cobalt and Aluminium (NCA)	Power and energy density, calendar and cycle life	Safety
Nickel Manganese Cobalt (NMC)	Power and energy density, Cycle and calendar life	Safety
Lithium Polymer (LiMnO ₄)	Power density	Calendar life
Lithium ion phosphate (LiFePO ₄)	Safety	Energy density, calendar life


What is Battery Management

The collection of features and functions that enable the safe and reliable operation of battery cells or packs

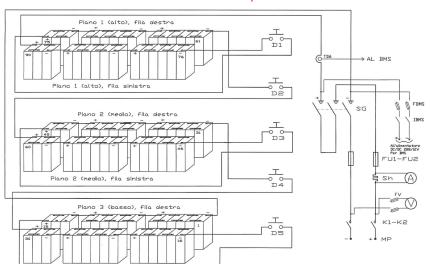
- All battery types require some degree of management to get the best out of them
- The larger the pack, the greater the need for management
- Lithium Ion batteries are relatively expensive and do not tolerate abuse – management is essential
- Lithium Ion batteries are inherently unsafe unless properly managed


Over Charging/Discharging

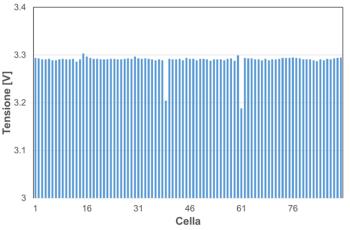
Cell Balancing

The process of equalising the SoC of all of the cells across the battery pack. Saves individual cells from being overcharged during charging and over discharged during operation. Fully balanced pack maximises capacity

CNR Istituto Motori: Es. Sistema di accumulo LiFePO₄


Number of Cells	90
Nominal Capacity C ₁₀	90 Ah
Battery Pack Nominal Voltage	288 V
Max Charging Current	135 A (1.5 C)

BMS Unità Master


PIOC-SCITARIA

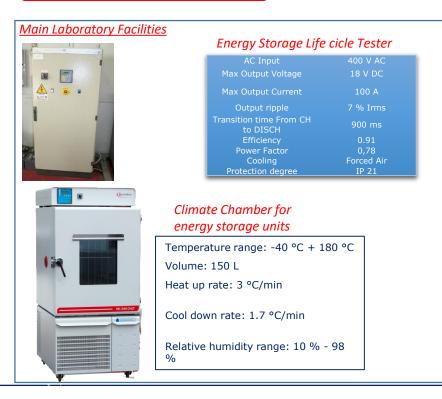
N. 6 Unità Slave

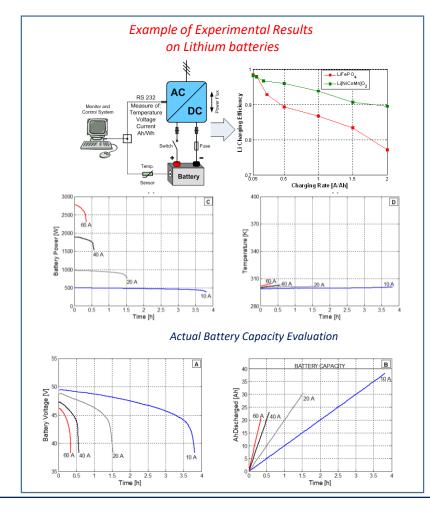
Pacco Batteria LiFePO₄

Interno quadro Elettrico

Acquisizione Tensione di Singola cella

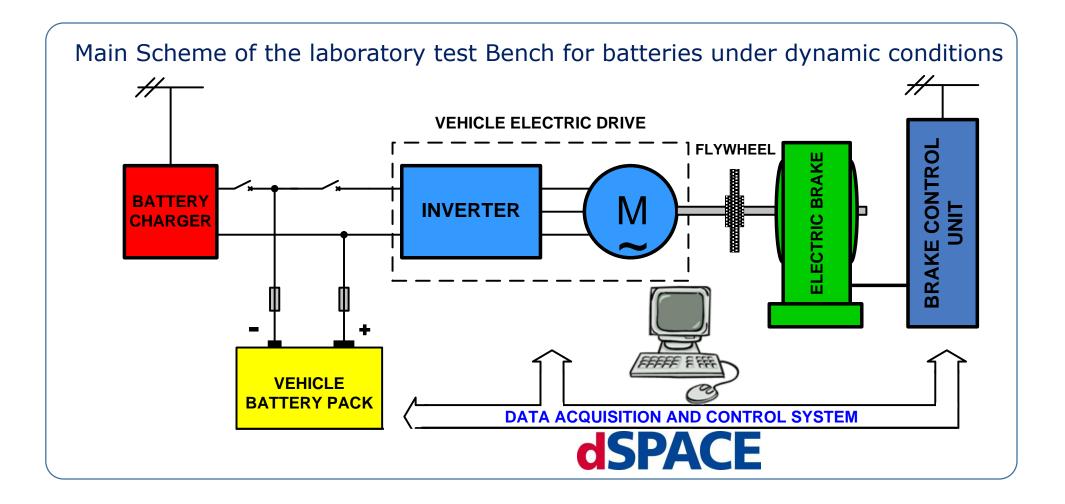
Schema elettrico di collegamento




Research activities in Istituto Motori on storage systems for sustainable mobility

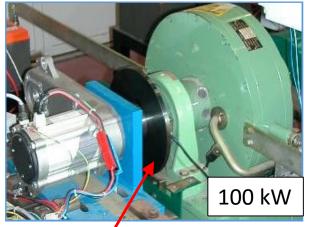
- •Experimental analysis of electric storage systems in both stationary and dynamic operating conditions.
- •Performance evaluation and comparison of various storage system technologies for on-board and stationary applications.
- •Development of advanced Battery Management Systems (BMS).
- Controlled temperature and relative humidity tests.
- •Storage systems Life Cycle Assessment (LCA).
- Advanced modelling of energy storage systems.

Examples of storage systems technologies tested in IM Laboratories ZEBRA Lead Acid Li[NiCoMn]O2 Super-Capacitor Li-Ion Capacitors 10000 r Density [W/kg] Li-Ion Capacitors Power 100 his A heal Energy Density [Wh/kg]


European Project Vision – xEV coordinated by AVL

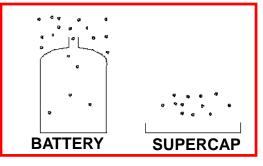
Dynamic Laboratory Test-Bench for Electric drive

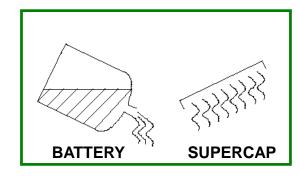
Laboratory Test Benches for Electric Drive up to 230 kW


4-quadrant Dynamic Brakes

Eddy Current Brakes

Flywheel for the simulation of vehicle inertia

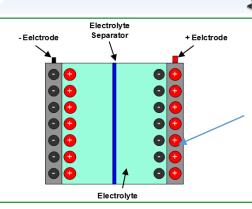




Electric Double Layer Capacitors (EDLCs)

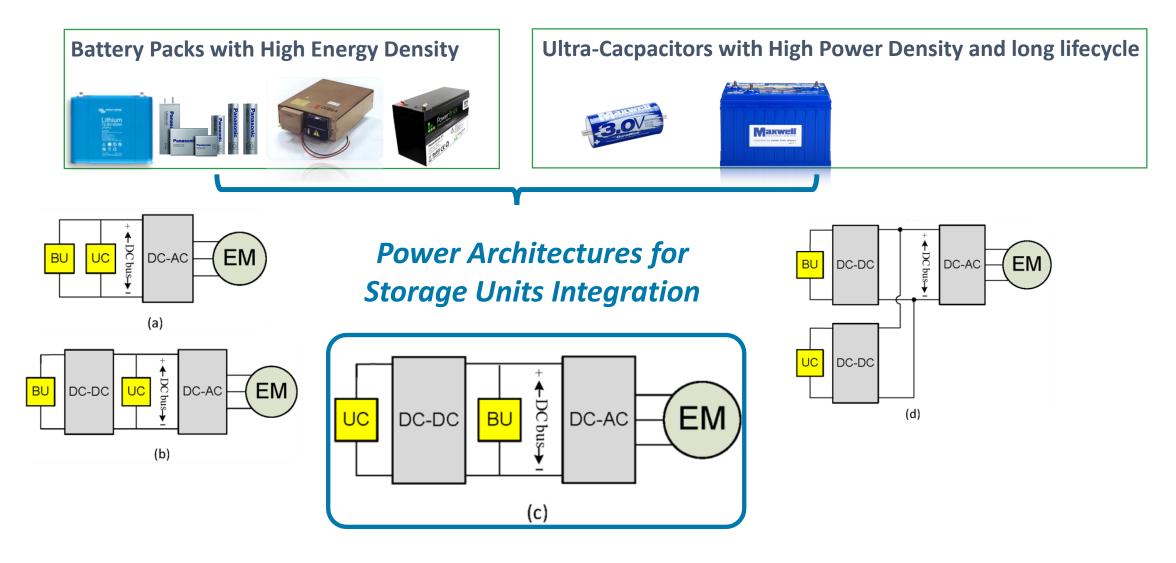
What are Ultra-Capacitors? Energy Density vs. Power Density

The characteristics of energy-storage and power-storage systems can be compared based on an analogy between water and electricity.

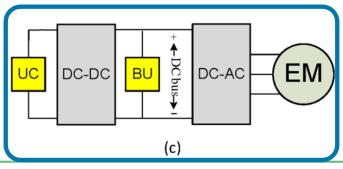


CHARGE

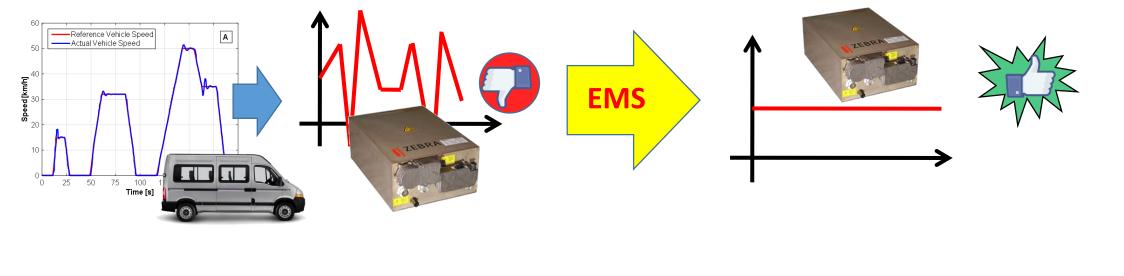
- Densità di Potenza
- Densità di energia superiore in confronto ai condensatori classici
- Vita Utile (>500.000 cicli di carica scarica)


Rated Capacitance [F]	63
Max Equivalent Series Resistance (in DC) initial [mΩ]	18
Rated Voltage [V]	125
Maximum Voltage [V]	136
Max Continuous Current @ ΔT = 15 K[A]	140
Max Continuous Current @ ΔT = 40 K [A]	240
Max Peak Current [A]	1900
Maximum Series Voltage [V]	1500
Operative Temperature [K]	263 ÷ 340
Cooling System	Air

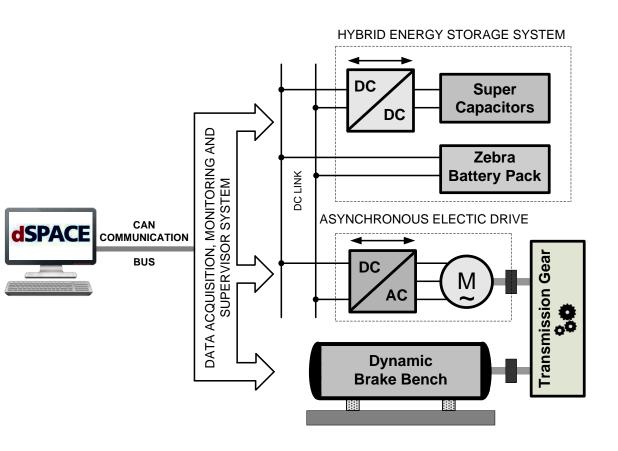
Porous structures of the EDLCs electrode surface, realizing equivalent areas up to 2000 m^2/cm^3 with a consequent increase in capacitance $C=\varepsilon_0A/d$

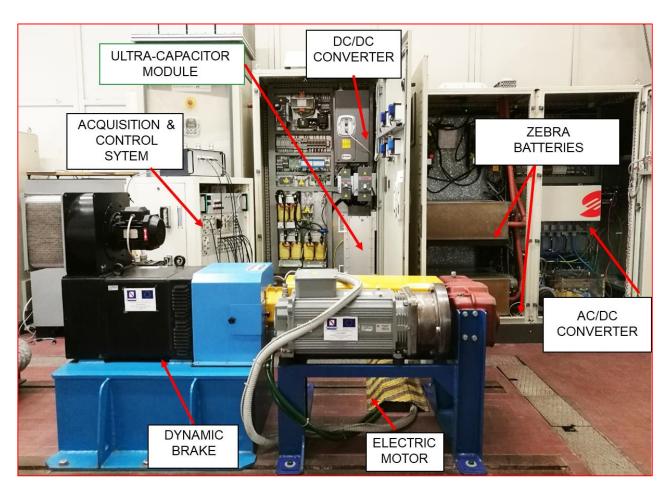


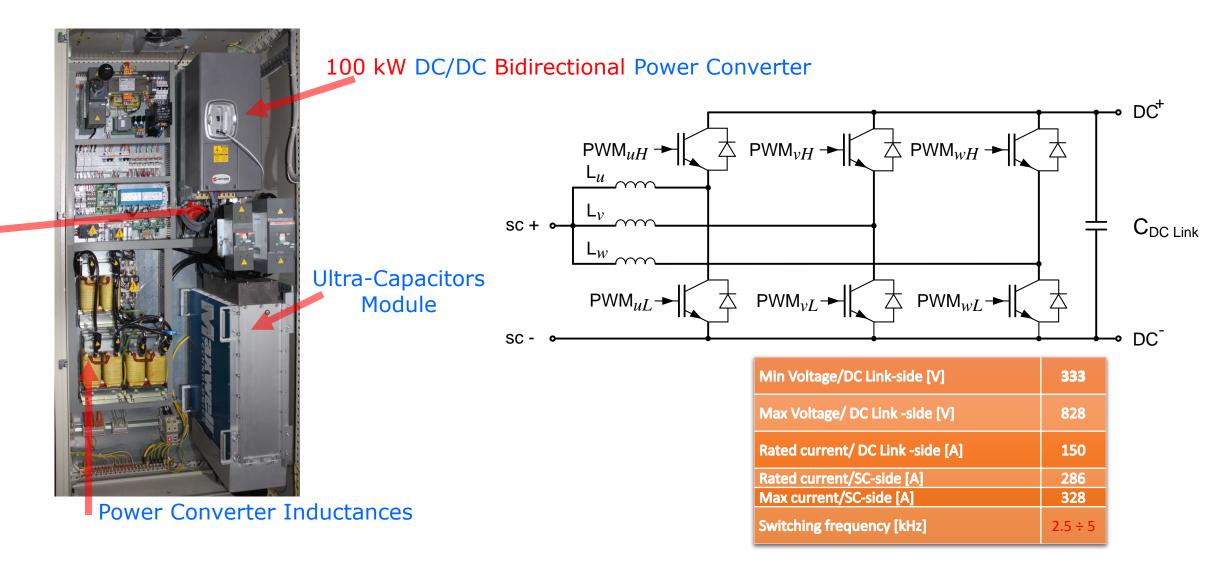
Hybrid Energy Storage Systems (HESS)



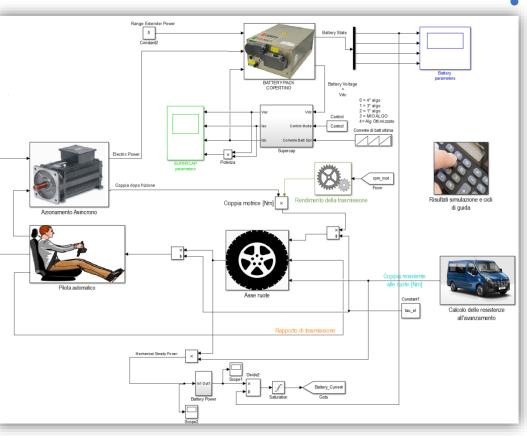
Energy Management Strategies (EMS)

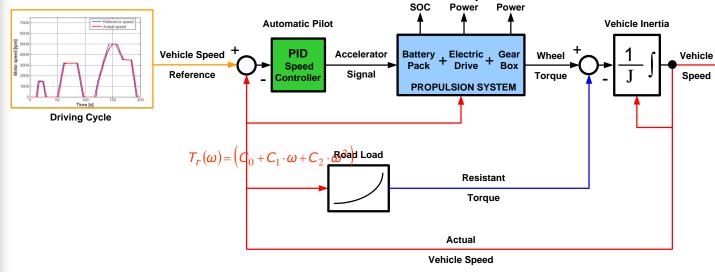



Main Objective of EMS: Reduction of battery pack charging/discharging peak current through the use of ultra-capacitors in order to increase the expected battery lifetime



Scheme and Picture of the Laboratory Dynamic Test-Bench



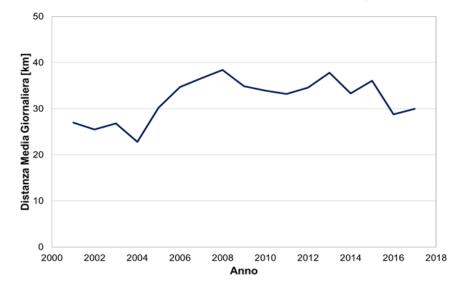


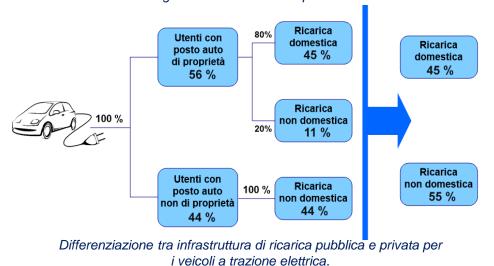
Simulink Model of Electric Vehicle

Speed and torque control scheme

Battery Mechanical

Laboratory implementation of EMS


dSPACE dSPACE Simulink Model Built in **Control Desk** Hardware ".ppc" format MATLAB Measurement **Acquistion** Software **Data acquisition Flows** ".mat" **Real Time** Control

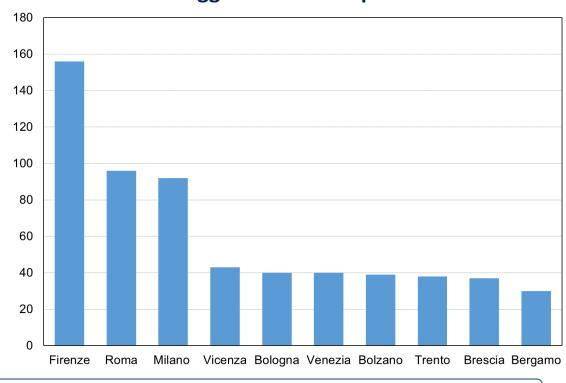

Infrastruttura di Ricarica per veicoli elettrici ed ibridi plug-in

Infrastruttura di ricarica in Italia: Analisi dei Fabbisogni

Vehicle Segment	Brand	Model	Model Year	Battery Energy Content (kWh)	Range (km)
	Smart	Fortwo	2014	17,6	160
	Toyota	iQ EV	2012	12	85
	Fiat	500e	2015	24	135
	Citroen	C-Zero	2014	14,5	150
	Peugeot	iOn	2014	14,5	150
Small	Mitsubitshi	i-MiEV	2014	16	160
	VW	e-up!	2013	18,7	160
	Chevrolet	Spark Ev	2015	18,4	130
	Bollore	Bluecar	2015	30	250
	Mitsubitshi	MinicabMiEV	2014	16	150
Average				18.2	153
Median				16.8	150
	BMW	i3	2014	22	190
Medium-Large	Renault	Zoe	2015	22	240
	Volvo	C30 Electric	2015	24	145
	VW	e-Golf	2016	24,2	190
	Nissan	Leaf (2016)	2014	30	250
	Honda	FIT EV	2012	20	130
	Renault	Fluence Z.E.	2015	22	185
	Ford	Focus EV	2015	23	162
	Kia	Soul Electric	2015	27	212
	Mercedes	B-class El.Dr.	2015	36	230
	BYD	e6	2015	61,4	205
	Nissan	e-NV200	2015	24	170
	Toyota	RAV 4 EV	2014	41,8	182
	Tesla	Model S	2015	75	480
	Tesla	Model X	2015	90	489
Average				36.2	231
Median				24.2	190

Andamento della distanza media giornaliera percorsa nei giorni feriali dal 2000 in poi.

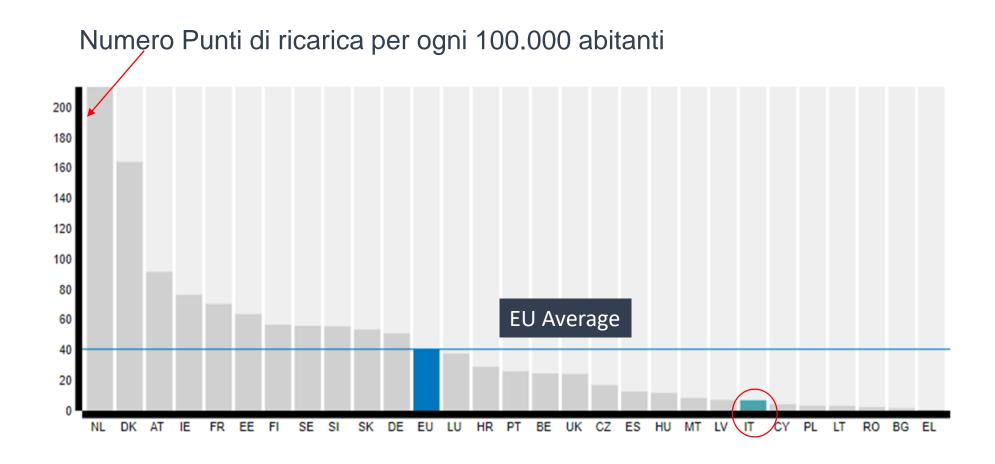
Infrastruttura di Ricarica esistente in Italia


- > 1150 punti di ricarica totali
- > 50 punti di ricarica rapida DC

Source:

https://www.colonnineelettriche.it/ https://www.eneldrive.it/

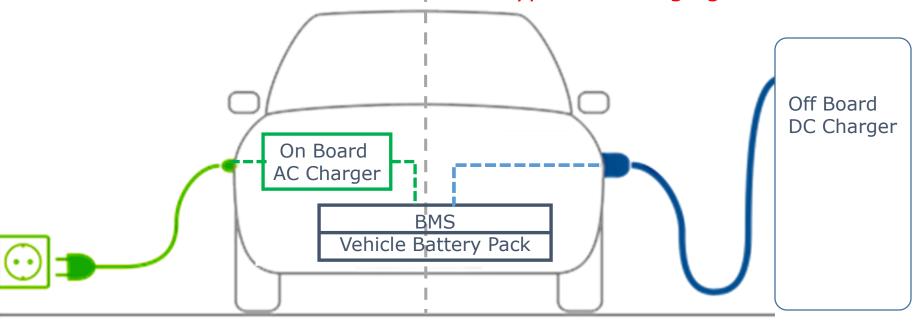
> 10 Città con maggior numero di punti di ricarica



EU2020 - Progetto Replicate Comune di Firenze, Comune di San Sebastian, ENEL, CNR - IIT, CNR - IM

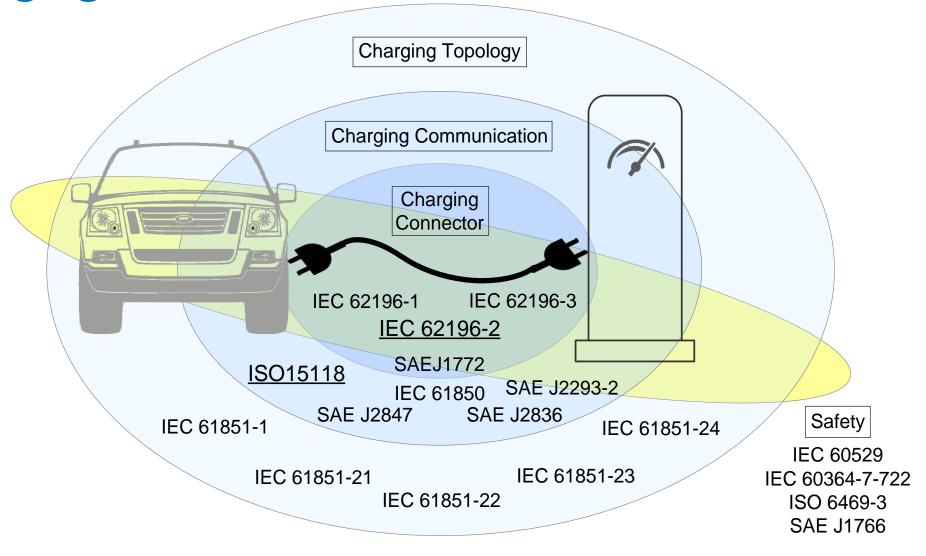
Confronto con la media Europea

Source: European Commission – Mobility and Transport

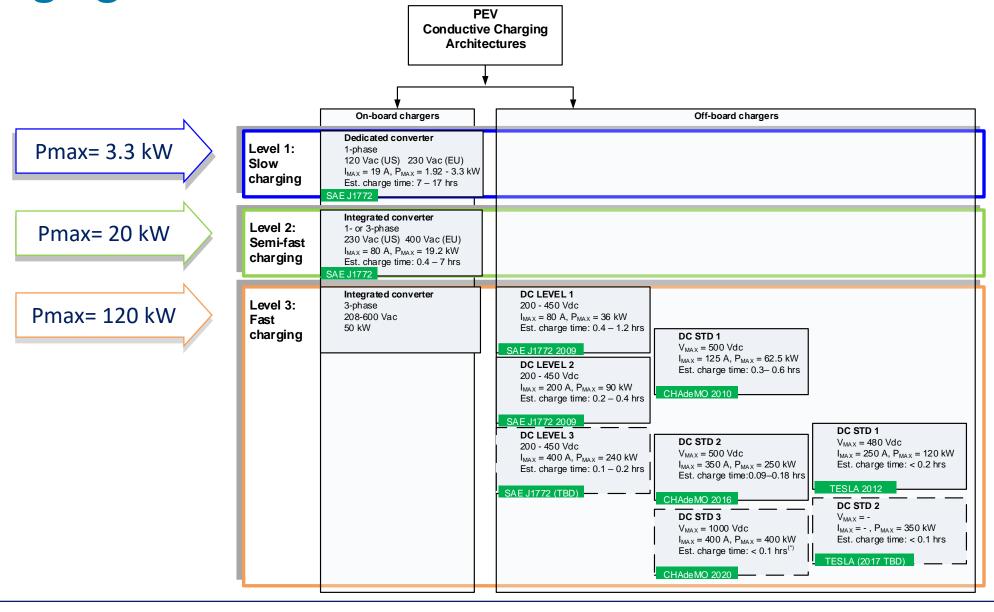

PEV Charging Devices

On Board AC Chargers:

- Reduced Charging Power
- Affected by Size and weight constraints
- Typical recharging Time: 4-8 h


Off Board DC Chargers:

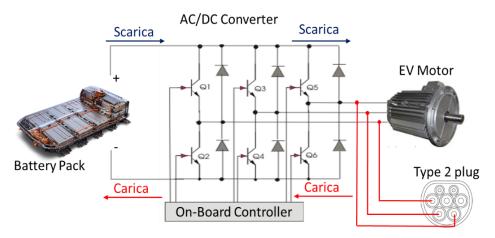
- V2G Management
- Data communication system with the recharging vehicle
- High Power requirements from the main grid
- Typical recharging Time: 0.5 2 h


PEV Charging Standards

Source: L. Rubino, C. Capasso, O. Veneri "Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility" Applied Energy 2017

PEV Charging Standard: SAE + ChaDeMo + Tesla

Standard di ricarica IEC 61851-1


Modo 1	Modo 2	Modo 3	Modo 4
Ricarica lenta con alimentazione alimentazione in AC a 230 in AC a 230 V - 16 A (~3.7 kW)		Ricarica lenta con alimentazione monofase in AC a 230 V – 16 A; Ricarica mediamente rapida con alimentazione:	Ricarica ultra rapida in corrente continua fino a 400 V - 200 A DC (~80 kW)
		 monofase AC 230 V - 32 A (~7 kW) trifase AC 400 V - 16 A (~11 kW) trifase AC 400 V - 32 A (~22 kW) trifase AC 400 V 63 A (~43 kW) 	
Tempi di Ricarica: (6-8 h)	Tempi di Ricarica: (6-8 h);	Tempi di Ricarica: fino a 1 h;	Tempi di ricarica: fino a 15 min
Ricarica mediante una semplice presa domestica o domestica o industriale, industriale dotato di dispositivo Control Box PWM per garantire la sicurezza delle operazioni		Ricarica mediante l'impiego di connettori specifici e sistemi di sicurezza PWM.	Ricarica l'impiego di connettori specifici e sistemi di sicurezza con carica-batterie posizionato esternamente al veicolo.
Ammessa solamente Ammessa in ambiente in ambiente domestico domestico e pubblico. privato		Ricarica ammessa in ambiente domestico e pubblico	Ricarica ammessa solamente in ambiente pubblico

rica PEV: Modo 1 - 3

Modo 2: Equipaggiamento ricarica con connettore **tipo 3 A**

Sistema di ricarica per Modo 3 AC ad elevata potenza

Modo 3 Equipaggiamento per Ricarica

	SAE J1772-2009 (Tipo 1)	VDE-AR-E 2623-2-2 (Tipo 2)
Schema Presa		
Immagine del Connettore		
Immagine presa lato veicolo/stazione		
N. Contatti di potenza	3: Fase, Neutro, Massa	5: 3 Fasi, Neutro, Massa
N. Contatti di comunicazione	2: PP(prossimità), CP(Controllo Pilota)	2: PP(prossimità), CP(Controllo Pilota)
Potenza max di ricarica	7.4 kW (32 A monofase AC)	22 kW (32 A trifase AC)

es. Colonnine di ricarica modo 3 fino a 40 kW

Ricarica PEV modo 4

Colonnine ricarica modo 4

TESLA Supercharger

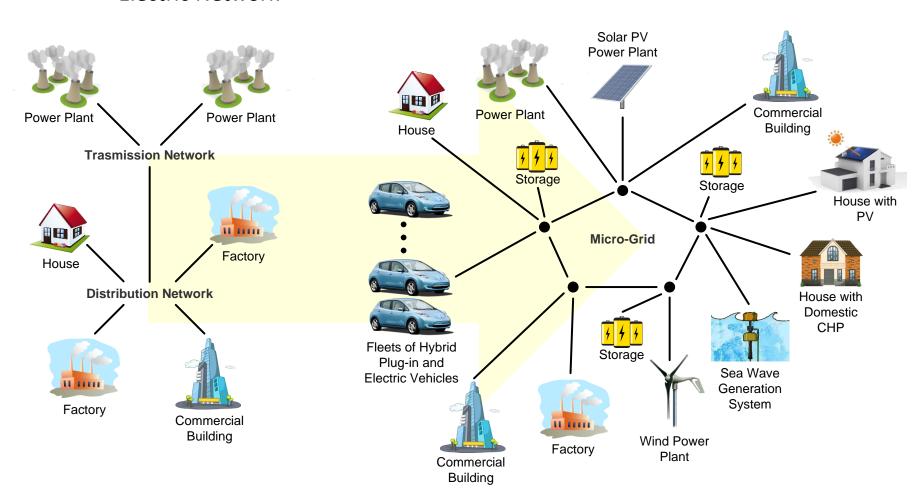
Power: 120 kW DC Standard: CCS

ABB Terra 51

Power: 50 kW DC 22 kW AC (mode 3) Multi-standard

Siemens QC 45

Power: 45 kW DC 22 kW AC (mode 3) Multi-Standard

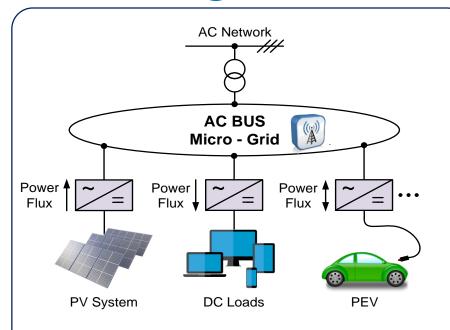

Smart Grid - Integrazione dei PEV con la rete elettrica

Yesterday:

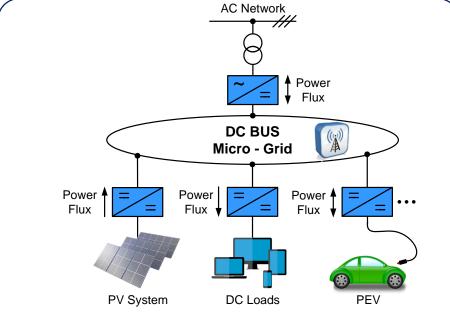
Centralized
Electric Network

Tomorrow:

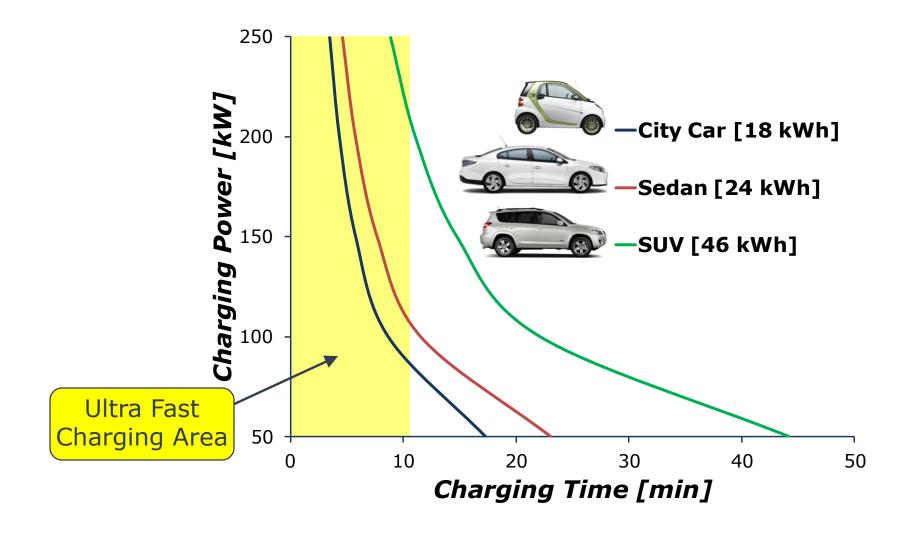
Distributed Electric Network



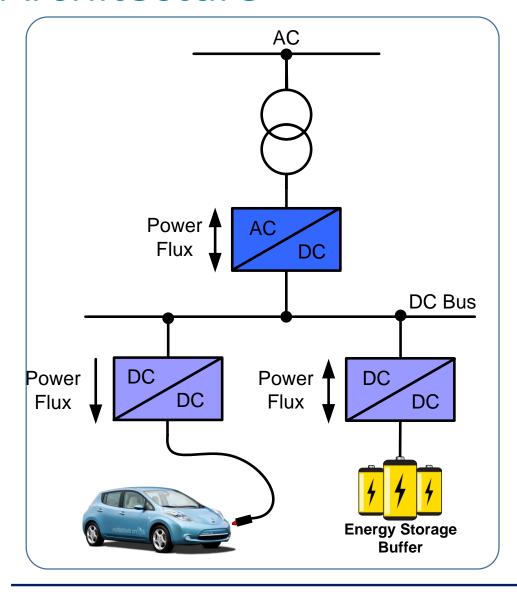
Principali Attori Energetici:


- Flotte di veicoli elettrici
- Sistemi di accumulo Stazionari
- Sistemi di generazione distribuiti da fonte rinnovabile

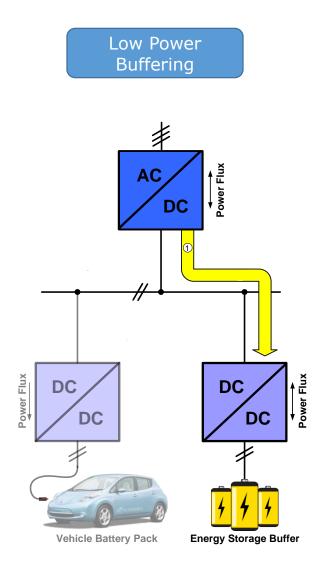
DC and AC Microgrids

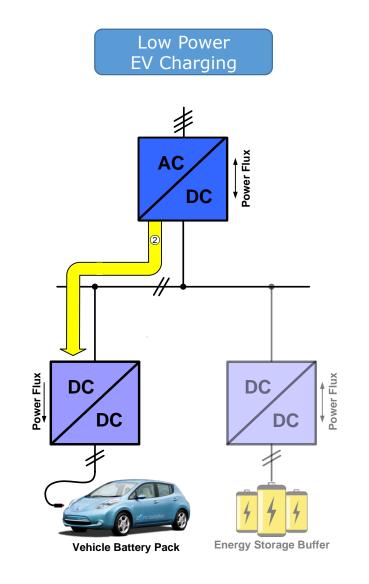

- **Advantages:**
 - The main grid already works in AC
 - Easy standardization
- Drawbacks:
 - Efficiency losses due to the large number of AC/DC conversion
 - On-board battery charger

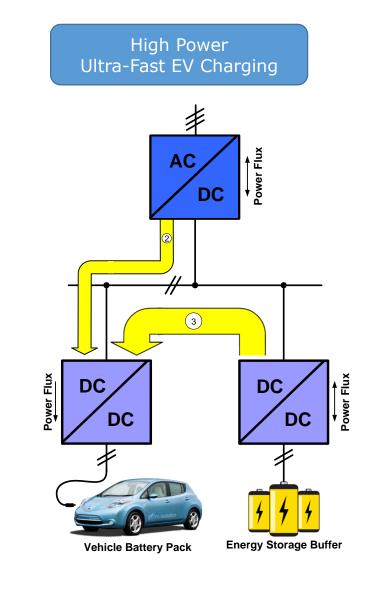
- Advantages:
 - Single AC/DC conversion stage
 - High efficiency DC/DC converters
 - Better RES Integration
- **Drawbacks**:
 - Expensive high DC Voltage electric components



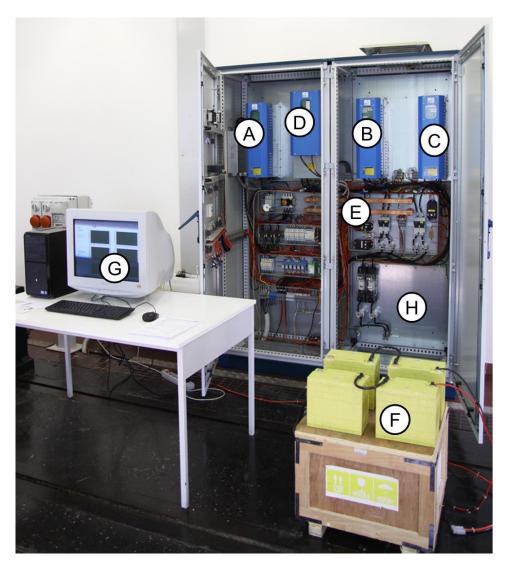
Fast Charging Requirement

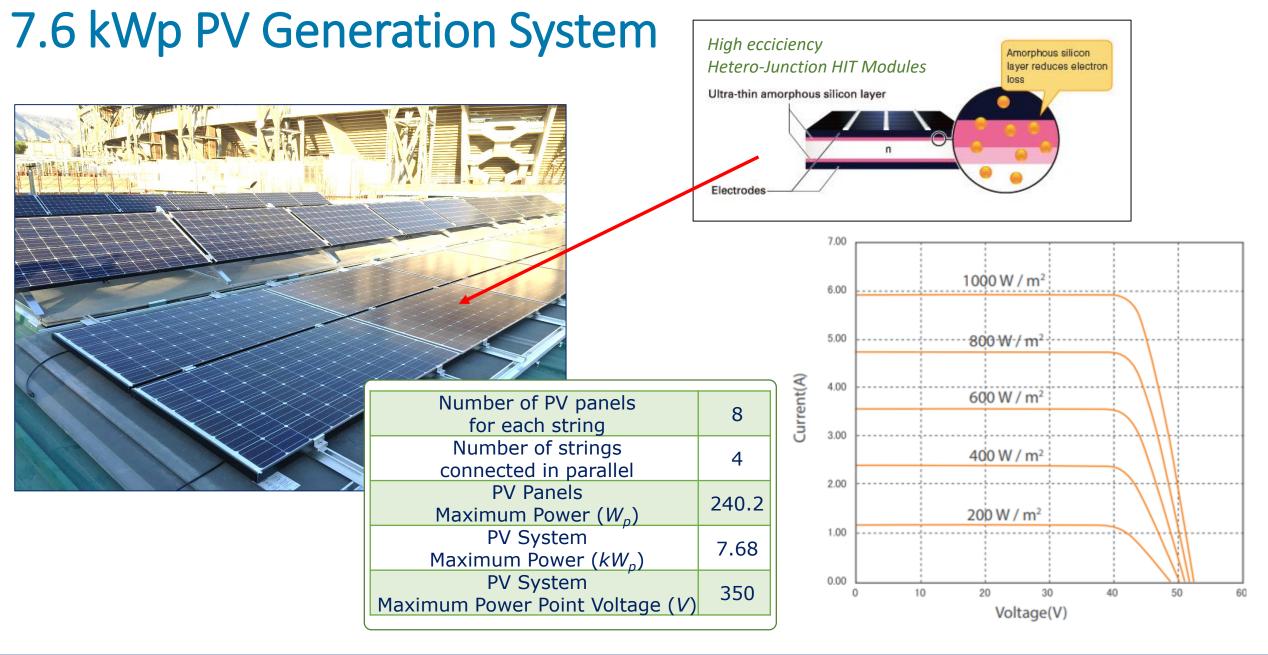

Buffer Architecture



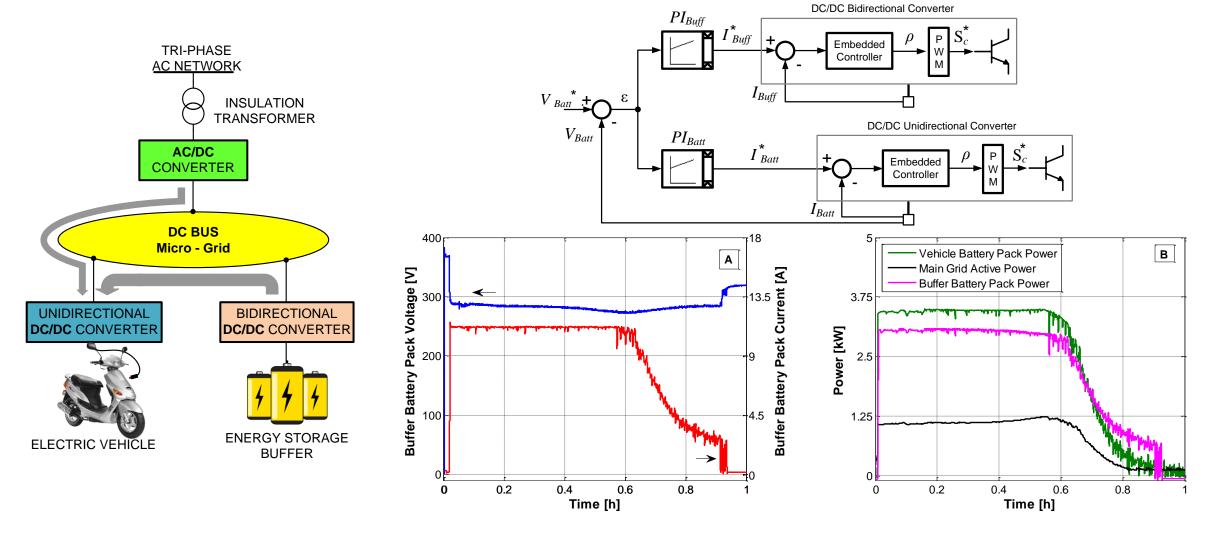

- ➤ The use of an energy storage system as power buffer can reduce the impact of the ultra-fast charging on the grid
- ➤The grid tie converter can be downsized in terms of power

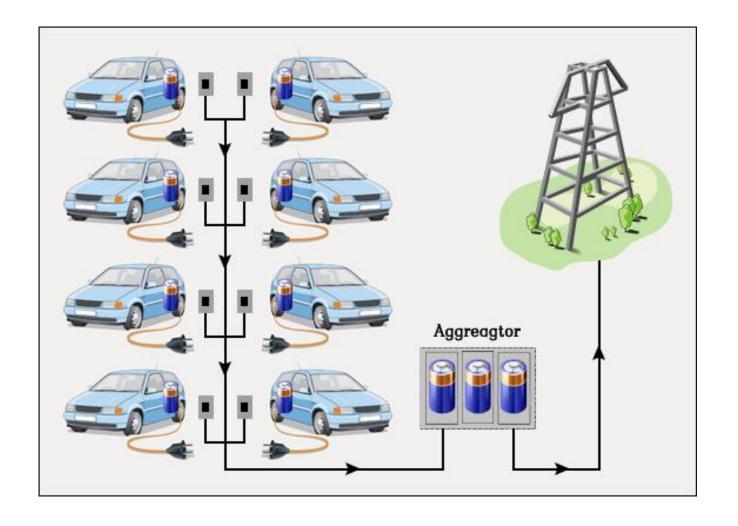
Buffer Architecture – How it Works



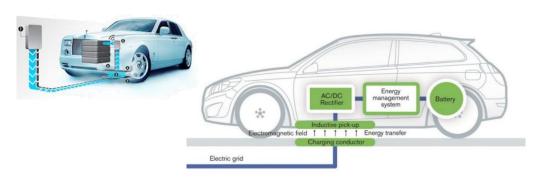


Istituto Motori: Prototype of DC Charging Station for PEV

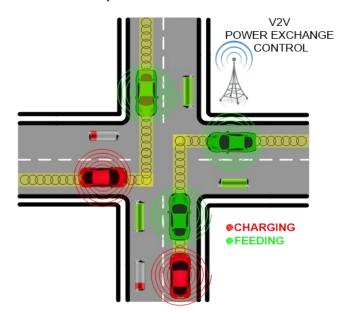

- A AC/DC Bidirectional Converter
- B-DC/DC Bidirectional Converter
- C DC/DC Unidirectional Converter
- D DC/DC Bidirectional Converter for RESs/ESs Integration
- E DC-Link
- F PEV Battery Pack On Charge
- G Monitoring PC
- H Additional Space for Future Extension

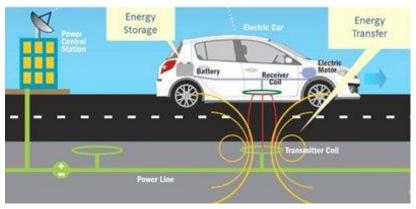


Experimental Results – Charging Operations With Energy Storage Buffer + Main Grid



Future Works: Servizi Vehicle to Grid




Future Works: Inductive Charging Systems

> Stationary Wireless Power Transfer

> Vehicle to Vehicle Scheme

Dynamic Wireless Power Transfer

In my

Conclusioni

- I veicoli puramente elettrici di **piccola taglia** rappresentano una reale soluzione alle problematiche di inquinamento nei centri **urbani**. Tuttavia il bilancio complessivo in termini di CO₂ varia al variare del mix di produzione energetica nazionale.
- La diffusione sul mercato dei veicoli puramente elettrici è limitata della **ridotta autonomia** e da **tempi di ricarica** ancora elevati, se confrontati con quelli di veicoli ad alimentazione tradizionale. Per tale motivo è prevista una più rapida diffusione nel breve termine di veicoli a propulsione ibrida.
- Nuove tecnologie di accumulo e sistemi di conversione consentono di ridurre i tempi di ricarica. Tuttavia l'impatto per la rete elettrica, provocato da una capillare diffusione di veicoli in ricarica, va gestito in un contesto di tipo smart grid, favorendo la produzione di energia da **fonti rinnovabili**, lo scambio energetico con sistemi di accumulo stazionari e l'impiego di servizi **vehicle to grid**.

Dr. Clemente Capasso

Research Technologist

Via G. Marconi, 4 80125 Naples, ITALY http://www.im.cnr.it Email: c.capasso@im.cnr.it Tel: +39 081 7177155 Fax: +39 081 2396 097

